SYSTEMC

Transaction-level modeling
of bus-based systems with
SystemC 2.0

Ric Hilderink, Thorsten Grotker

Synopsys, Inc.

Efficient platform modeling

= Get to executable platform model ASAP
= Simulation speed >> 100k cycles/sec

BUS

Moving from pin-level to transaction-level
models (TLM) I1s mandatory!

2

QOutline

ldea:

" Based on an example show how SystemC 2.0
enables efficient platform modeling.

" Introduce some key language elements in the
process.

3

Example: Simple bus model

= Cycle-accurate transaction-level model.
= “Simple” =
—No pipelining
No split transactions
—No master wait states
No request/acknowledge scheme

NB: Of course, these features can be modeled at the
transaction level

4

Interface Method Calls (IMC)

= Modules communicate via channels.
= Channels implement interfaces.
= An interface Is a set of methods (functions).

= Ports
— Modules have ports.
— Ports are connected to channels.
— Modules access channels through ports.

some_port->sone_net hod(sone_dat a) ;

5

Interface Methods Calls (cont’d)

module /
“mocess IS) channel)
ort \\\

nodul e: : process() {

port->sone_net hod(42);
}

Hierarchical channels

» Channels can be hierarchical, I.e. they can
contain modules, processes, and channels.

= A module that implements an interface Is a
hierarchical channel.

module hierarchical

L channel
“port i/f@

7

Example system (napkin view)

SystemC 2.0 transaction-level model

- BUS —
Y 33

clock

cn

il

— D
p—

@- c

SystemC 2.0 transaction-level model

e BUS —
3

clock

cn

il

— D
p—

@c*

SystemC 2.0 transaction-level model

. & =

clock

cn

il

—

— D
p—

]

@c*

SystemC 2.0 transaction-level model

. & -

clock

cn

il

—

P
e

]

@c*

SystemC 2.0 transaction-level model

. & =

clock

cn

il

—

— D
p—

]

@c*

SystemC 2.0 transaction-level model

pa

— BUS

o

clock

cn

il

—

— |
p—

~

e

@c*

SystemC 2.0 transaction-level model

clock

— BUS

il

—

] Yy

I I

Rising clock edge

pa

— BUS

clock

cn

7
| :_M

I I

— >

Falling clock edge

I I

clock

Falling clock edge

I I

clock

Bus Interfaces

g

Master interfaces of the bus

= Blocking:

— Complete bursts

—Used by high-level models
= Non-blocking:

— Cycle-based

—Used by processor models
= Direct:

— Immediate slave access
— Put SW debugger to work

21

Blocking master interface

® status burst _read(unique_priority, data*,
start address, | ength=1,
| ock=f al se);

® status burst_wite(unique priority, data*,
start address, | ength=1,
| ock=f al se);

=“Blocking™ because call returns only after
complete transmission is finished.

= Master is identified by its unique priority.

22

Dynamic Sensitivity

= SystemC 1.0

— Static sensitivity

*Processes are made sensitive to a fixed set of signals during
elaboration

= SystemC 2.0
— Static sensitivity
—Dynamic sensitivity

*The sensitivity (activiation condition) of a process can be
altered during simulation (after elaboration)

+Main features: events and extended wait() method

23

Waiting
wait () ; [/ as in SystenC 1.0
wai t (event) ; [/ walt for event
wailt(el | e2 | e3); // wait for first event

walt(el & e2 & e3); // wait for all events
wai t (200, SC NS); [/ wait for 200ns

[l wait wth tineout
wait (200, SC NS, el | e2),;
wai t (200, SC NS, el & e2);

24

Dynamic sensitivity

Statically sensitive to clock
— activated every cycle

clock

= BUS

status bus::burst wite(...) {

wal t (transm ssi on_done);

}

25

Dynamic sensitivity

Statically sensitive to clock
— activated every cycle

clock

o BUS

Advantages:
= Easy-to-use interface (blocking interface)
= Simulation speed

26

Non-blocking master interface

" status get status(unique priority);

" status read(unique priority, data*,
address, | ock=fal se);

" status wite(unique priority, data*,
address, | ock=fal se);

= “Non-blocking” because calls return immediately.

" | ess convenient than blocking API but caller remains
In control (needed e.g. for most processor models).

27

Direct master interface

" status direct _read(data*, address);
" status direct _wite(data*, address),;

" Provides direct access to slaves (using the bus’
address map).

—Immediate access = simulated time does not advance
—No arbitration

= Use for SW debuggers or decoupling of HW and SW.
= Use with care!

28

Slave interface

pa

— BUS

a

clock

23

@c*

Slave interfaces

" unsigned start _address(); address
" unsi gned end_address(); mapping
" status read(data*, address); regular
" status wite(data*, address); /0

" status direct _read(data*, address),; debug
" status direct _wite(data*, address); Interface

30

What's so cool about transaction-level
bus models?

They are ...
= relatively easy to develop and extend
" easy to use

= fast

—use of IMC = function calls instead of HW signals
and control FSMs

— use of dynamic sensitivity = reduce unnecessary
process activations

31

Key language elements used in the
example

" Interface method calls (IMC)

= Hierarchical channels

= Connecting ports to multiple channels
= Dynamic sensitivity / waiting

32

Conclusions

SystemC 2.0 enables efficient platform modeling.

= Ease of modeling
—> get to executable platform model ASAP

= Simulation speed

Still not convinced?

Try itout! (see following slides)

33

How to Install

> cd <systemc_installation_directory>/examples/systemc

> gtar zxvf simple_bus_v2.tgz

This will create a directory 'simple_bus'. Go to this directory and

build the executable, e.g.

For gcc-2.95.2 on Solaris:

See README.txt for
detailed information!

> gmake -f Makefile.gcc

Now you can run the executable, e.g.

> simple_bus.x

34

The testbench

clock

EpS— .y

; i see simple bus test.h

@- c

— D
p—

The testbench

clock

36

The testbench

M1 md |\/2 md |\/3
il il]

@c*

The testbench

M1
[

@c*

The testbench (cont’d)

= Most modules are configurable

— Masters
+ Priority (not direct master)
+ Delay / timeout
+ Bus locking on/off (not direct master)
— Slaves
+ Address ranges
+ Number of wait-states (only slow memory)

— Bus, arbiter, direct master
+\erbosity

= Change parameter settings in simple bus_test.h
= See README.txt for detalls

39

SYSTEMC

That's it!

Thank you and have fun trying it out!

